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Abstract-Working from the governing differential equation a Galerkin procedure has been
developed to model the localized buckle pattern of an elastic strut on a nonlinear elastic (softening)
Winkler foundation. The choice of trial functions comes directly from a perturbation study about
the critical point, the actual shape being determined by the eigenvalues of the linearized equation.
A good comparison has been achieved with independently obtained numerical solutions using only
a few modes. Other measures of the accuracy of the approximate solutions have also proven to be
favourable. Copyright © 1997 Elsevier Science Ltd.

1. INTRODUCTION

Localized buckling occurs in long elastic structures which have an equal propensity to
buckle at any location along their length. Examples of such behaviour are the thermally­
induced buckling of submarine pipelines and railway tracks (Tvergaard and Needleman
(1981)). Although initially triggered by a material or geometric imperfection such behaviour
is an intrinsic property of the perfect system.

The examples above may be modelled as long elastic beam-columns resting on elastic
foundations and subjected to axial compression (Hetenyi (1946); Bazant and Cedolin
(1991)). Under conservative loading this is a problem of elastic stability which has a
hamiltonian nature and is known to exhibit a great diversity of solutions (Hunt and Wadee,
(1991); Champneys and Toland (1993)). Despite the existence of a multiplicity of post­
critical equilibrium states to the governing differential equation (Fig. 1), the actual buckled
shape adopted by a structure is governed by the principle of least energy. In general, for
long structures this corresponds to the single-hump localized response which is the subject
of this work. Important early contributions to the study of localized buckling of flexible
beams on nonlinear elastic foundations have been made by many investigators (Tvergaard
and Needleman (1980); Potier-Ferry (1983)).

Traditionally, engineers seeking to understand localized buckling of struts on foun­
dations have used perturbation methods to study the behaviour close to the critical point
where the fundamental equilibrium path intersects the unstable symmetric post-buckling
path (Thompson and Hunt (1973)). Such schemes, which begin with either the differential
equation or an energy formulation, yield solutions in terms of a perturbation parameter,
which is a measure of the proximity to the exact linear eigenvalue solution at the critical
point, and are therefore valid only in an asymptotic sense (Murdock (1991)).

This paper demonstrates a technique which obviates this dependence upon the critical
point and is capable of generating good approximate solutions throughout the post-buck­
ling regime. The localized buckle of an infinitely long elastic strut is modelled using a
Galerkin approach in which the deflected shape is represented by a sum of continuous
displacement functions. The general form of these functions is suggested by a perturbation
study, while the exact shape is determined by the real and imaginary parts of the linearized
eigenvalues at the appropriate load value. The amplitudes of each mode form, representing
the generalized displacements of the deformed structure, are determined using Galerkin's
method.
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Fig. I. A variety of solutions exist for the nonlinear differential equation Elw"" +Pw" +kw - cw3 = 0
including: (a) periodic; (b) modulated; (c) single-hump localized; and (d) multi-hump localized

responses.

The Galerkin procedure is one of many classical methods of analysis originally
developed for the manual solution of problems with simple geometries. With the advent of
cheap computers have come more general numerical methods capable of solving more
complicated geometries. In this case, however, there are several advantages in using a
classical modal approach. The one-dimensional strut model results in the simplest possible
geometry, and a priori knowledge, gained from previous perturbation studies, may be
incorporated in the modal form. Related problems with wavelength-dependent foundations
(Hunt et al. (1995» may be tackled more directly using a modal approach. Near to the
critical point, where the approximate solutions are most accurate, initial value- and bound­
ary value solvers become difficult to use as the truncation length increases beyond practical
bounds (Champneys and Spence (1993». In any case, differential equation solvers require
a reasonably accurate initial guess to converge to the solution of nonlinear problems. An
approximate solution, using only a few modes, can be used as a starting point for a
numerical scheme, and, with additional modes, may provide an independent check of the
numerical solution.

This work is the first step in a project to investigate localized buckling of elastic
structures in visco-elastic media. The presence of a velocity-dependent constitutive relation
results in the action of non-conservative forces so that a potential energy formulation is
not possible. For this reason the Galerkin approach, utilizing the differential equation, has
been used here in favour of other approximate procedures such as the Rayleigh-Ritz
method.

A scenario currently being explored involves a strut, subjected to a compressive load,
resting on a Maxwell foundation (represented by a spring and dashpot in series). This model
exhibits an instantaneous elastic buckle followed by a period of visco-elastic behaviour, and
can be used to describe the formation of folding in geological strata. A first foray into this
phenomenon has recently been published (Hunt et al. (1995».

2. FORMULATION OF THE DIFFERENTIAL EQUATION

The differential equation governing the response of a compressed strut (Fig. 2) may
be derived either: directly by equilibration of forces; or from the Principle ofVirtual Work;
or by using an energy formulation. The latter approach is adopted here with the total
potential energy for a linearized strut on a symmetric softening (cubic) foundation being

v = f~w 9O(w, w', w") dx, (1)

where a prime (') is used to represent differentiation with respect to the spatial variable, x.
The integrand is
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Fig. 2. (a) An elastic strut resting on a nonlinear (softening) elastic Winkler foundation; (b)
symmetric foundation resistance; (c) the root structure of the fundamental equilibrium state A,

where C( and pdefine respectively the real and imaginary parts of the eigenvalue.

(2)

in which EI is the bending stiffness of the strut, P is the axial compression, and k and care
the linear and nonlinear components of the foundation stiffness respectively. Higher-order
effects in both the bending energy and work done by load have been omitted (Thompson
and Hunt (1973». Application of the calculus of variations to the total potential energy
(1) results in the dimensional form of the differential equation

(3)

2.1. Nondimensionalization
It is useful to nondimensionalize the differential equation so that solutions are inde­

pendent of the relative magnitudes of material parameters. By using the following non­
dimensional parameters

p = ~ w= ~kC w, x = w"x,
pc' -.jk (4)

where the superscripts are used to denote those quantities evaluated at the critical point,

(5)

the resulting nondimensional form is obtained
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d4 w _d2w
-+2P-+w-w3 =0.
dx4 dx2

(6)

From now on the tildes above each term shall be dropped and the dimensionless form of
the differential equation,

w""+2Pw"+w-w3 = 0, (7)

will be used, in which ()' == d/dx. Whilst a numerical solution of this differential equation
may be obtained readily using standard numerical integration schemes, it appears almost
certain that a closed-form solution does not exist. The task is therefore to develop an
approximate procedure which is much simpler to apply than the numerical techniques, and
yet which retains much of the underlying character of the solution.

2.2. Linearized conditions
When w is small, as in the tails of the localized solution (x --+ ±(0), the linearized form

ofeqn (7) must be satisfied. Adopting a general complex representation w(x) = A eh
, where

A = IX + i{3, results in the characteristic equation

(8)

After substituting for A, and equating the real and imaginary parts to zero, the eigenvalues
of the linearized system can be expressed as

(9)

where IX and {3 define, respectively, the rate of exponential growth and decay, and the
wavelength of the modulated periodicity at the tails of the localization. It is these quantities
which are used to describe the precise shape of the mode form suggested by the perturbation
method of the following section.

3. PERTURBATION ANALYSIS

A nonlinear double-scale perturbation analysis of the differential eqn (7) can be used
to determine the load and form of the solution at the critical point, and also for developing
an ordered sequence of linear differential equations to describe the post-buckled response
(Wadee (1993)). The scheme, outlined only briefly here, is derived from the total potential
energy (1) and reduces the problem to a power series in terms of a perturbation parameter,
s, which is a measure of the distance away from the critical point. The beauty of using an
energy formulation as the basis for the perturbation method is that the suppression of
secular terms and elimination of passive co-ordinates are guaranteed automatically. A
detailed account of the method is to be published in a forthcoming paper (Wadee et al.
(1996)).

The deflected shape is expanded as a Fourier series in x

00

W= I. {Aj(X) cos iwx+Bi(X) sin iwx} ,
;=0

(10)

where the amplitudes, Ai and Bj , are permitted to vary slowly by expanding as power series
in the perturbation parameter to give
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Ai = Ai, I (X)s +Ai,2 (X)S2+.. ,,

Bi = Bi,1(X)s+Bi,2(X)S2+ ....
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(11)

Here, X = sx is the so-called slow-space variable, and is a function of both x and the
perturbation parameter, s, which is defined (Hunt et al. (1989» as

s= Jr-p.

The load and frequency, P and w, are also expanded as power series in s,

(12)

(13)

After substituting the expanded form of the deflected shape (10) into the integrand (2), and
applying the calculus of variations, equations are obtained at successive powers of s for the
unknown amplitudes, Ai and Bi. In principle, the scheme can be continued to an arbitrary
level of s, although obtaining a closed-form solution is likely to become increasingly more
difficult.

To enable closed-form solutions to be found, so-called contour integrals, having the
form of the second and third integrals in eqn (25), are ignored. While this simplification
leads to negligible error adjacent to the critical point, there is a growing contribution from
these integrals further into the post-buckling regime. These integrals are included in the
subsequent Galerkin analysis where they are evaluated in the complex plane by applying
the calculus of residues.

The expression obtained for the deflection to order S4 is

w = sA 1,1 coswx

+ S2 B 1,2 sin wx

+s3(A I ,3 coswx+A 3,3 cos3wx)

+s4(B1,4 sin wx+ B3,4 sin 3wx)

(14)

where the amplitudes are

4wC

Al I = rz= sech OX,
, y6c

W

C AB 1•2 = ~ -sech QXtanh ox,
yPC c

I I
A I 3 = rz= --(- 317 sech OX+307 sech3 OX),

, 72y 6c wCEI

wc3

A33 = rz=sech3 OX,
, 24ky 6c

1 I
BI4 = rz=. /1..(-2389 sechOXtanhOX+5524sech3 OXtanh OX),

, 864y 6c Ely k
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w
e3 AB 3•4 = 1m -sech3 nXtanhnX.

16k...,; pe c

we
n=--.

JW

(15)

(16)

In general, perturbation results may be extended to any desired level of accuracy, however,
in this instance their applicability is limited because contour integrals have been ignored.

4. THE GALERKIN PROCEDURE

The Galerkin procedure, which belongs to the family of techniques known collectively
as the method of weighted residuals, can reveal many of the qualitative features ofa solution
using only a few modes. More precise answers can be achieved by introducing additional
modes (Finlayson (1972)). An approximate solution, w, consisting of a number of modes
</>i (also known as trial functions or displacement shapes), is chosen to represent the deflected
shape of the strut

n

w(x) = L A,</>j,
;=0

(17)

with the centre of the localization (sometimes called the symmetric section) assumed to
occur at x = O. Owing to the approximate nature of the deflected shape, the differential eqn
(7) will not be satisfied exactly. The remainder, which is known as the residual, is

R(x,w) = w""+2Pw"+w-w3
, (18)

and depends not only on the form of the approximate solution but varies also with the
position along the length of the strut. The quantity

f~c<) R(x, W)</>i dx (19)

has the dimensions of work and is defined as the excess energy of the strut over the
displacement </>i' The Galerkin approximation requires this virtual excess energy to vanish
which leads to simultaneous nonlinear algebraic equations in terms of the unknown ampli­
tudes, Ai'

4.1. Choice ofmode shapes
The modes, </>i' are chosen to satisfy the flat boundary conditions expected ofa localized

solution at x = ±00, although this is not strictly necessary for the Galerkin procedure.
While there are many such functions, the greatest accuracy, for a small number of modes,
is obtained by using experience to select the most suitable form. Greater accuracy can also
be attained by the increasing the number of modes, though naturally at the expense of a
corresponding increase in the number of equations to be solved.

The perturbation method outlined previously provides approximate closed-form solu­
tions which are valid close to the critical point. In the procedure that follows, the form of
these perturbation solutions is maintained throughout the post-buckled state with the actual
shape at different load levels being governed by the eigenvalues of the linearized differential
equation. The effect of the contour integrals, defined previously, is included, thus ensuring
the validity of the analysis throughout the post-buckled state, unlike the results of the
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earlier perturbation method. The amplitudes Ai of eqn (17), which are constant for fixed
values of P, should not be confused with the slowly varying amplitudes, Ai and R;, of the
perturbation approach in eqn (11), which depend on P and x, despite the similar notation.

According to Galerkin's method, trial functions must be linearly independent and as
n --+ Cf) the approximate solution should tend to the exact solution. Whilst the first criterion
is a natural consequence of the combined trigonometric and hyperbolic mode shapes
chosen, a formal proof of the second is not performed-the results themselves being
considered sufficient justification.

4.2. First mode
The first term in the ordered perturbation analysis (14) is used as the single mode

approximation so that

¢ I = sech rxx cos fh.

The approximate displacement according to eqn (17) is then

where the amplitude, A b is found from the Galerkin equation

(20)

(21)

(22)

This equation indicates that the work done by the residual (out of balance) forces over the
displacements ¢1(X) is zero.

For a particular value of load, P, the precise shape of the mode (20) is determined by
the rx and 13 of the linearized system given in eqn (9), and after substituting for wand
integrating over the infinite domain, the result is a nonlinear algebraic equation in terms of
the unknown amplitude, AI' The Galerkin equation is

VIAI/2 +V1A l / c,22 +V2Al/s,22 + {2rx2( - 5rx2+3132-P)A I-~An/4

+ {2rx2( - 5rx2+ 3132- P)A l - ~A i} I c•42 - 12rx3 f3A Ils,42 - ~A ile,44

+ 12rx4 A I h + 12rx4Al le,62 = 0 (23)

where j; and 12 are

II = rx4
- 6rx2132+ 134+2P(rx2- 132)+1 = 0,

12 = 4rxf3(rx2- 132+P) = 0,

and the various integrals are represented by

le,nm = f~oo sechnrxxcosmf3xdx,

Is.nm = f~oo sechnrxx tanh rxx sin mf3xdx,

(24)

(25)

These integrals may be evaluated directly, or derived from, standard integrals published
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in various texts (Gradshteyn and Ryzhik (1994». Alternatively the calculus of residues
(Stephenson and Radmore (1990» is a very useful tool for evaluating integrals over an
infinite domain.

Rearranging eqn (23) in terms of the amplitude Al and substituting for the integrals
above gives

(26)

where

8a:
k l = 15( _a:2 + 15p2 - 5P)

8pn
+ 15a:/a:2 +p2)( _a:2 +6p2 -5P)C I,

1 2pn 2 2 pn 2 2
kill = -2 + -(a: +p )C l + -(a: +4P )C2 ,

a: 3a:4 3a:4

in which the following substitutions have been made

(27)

pn
C1 = cosech-,

a:

The amplitude Al is then found directly as

2pn
C2 = cosech-.

a:
(28)

(29)

A closed-form solution for the amplitude is a unique property of the single mode approxi­
mation as coupled equations result when the deflected shape is represented by two or more
mode shapes.

4.3. Second mode
A more accurate solution can be obtained by incorporating two modes in the approxi­

mate deflected shape. In addition to mode c/>b a second mode,

c/>2 = sech a:x tanh a:x sin px, (30)

corresponding to the S2 coefficient in the perturbation analysis (14), is introduced. This
term allows a modulation in phase which is especially important around the symmetric
section (Wadee (1993» where the affect of the nonlinearity is greatest. Substitution of the
second mode into eqn (17), to determine the corresponding Galerkin equations, requires
much algebraic manipulation which can be performed most simply using a computation
package such as Mathematica (Wolfram (1988». After substituting for the integrals (25)
the amplitudes A j can be determined from the coupled equations

klA I+k2A 2+A I(klllAi +k122AD+A2(k21IAi +kmAD = 0,

llAI +l2A2 +A l(lIIIAi +l122AD+A2(l211Ai +/mAD = 0, (31)

where the coefficients of the amplitudes are listed in the Appendix. These expressions have
been programmed in the computer language "e" and solved iteratively using a Newton­
Raphson algorithm (Press et al. (1988». The resulting solutions are expected to provide a
better estimate of the numerical solution than those arising from the single mode approxi­
mation.
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4.4. Higher modes
Once again the perturbation analysis (14) is used as a guide for selecting higher order

mode shapes. Passive terms, such as cos 3wx and sin 3wx in eqn (14), arising from the cubic
form of the nonlinearity in the foundation stiffness are ignored owing to their meagre
contribution to the deflected shape of the strut. This is justified by comparing the relative
magnitudes of the coefficients of the sech3 OX terms in the perturbation amplitudes of eqn
(15). The magnitude of the active mode, A I•3, is approximately 100 times greater than for
the corresponding passive mode, A 3,3'

The third and fourth modes are therefore taken to be

<1>3 = sech3 rxx cos f3x,

<I> 4 = sech3 rxx tanh rxx sin f3x, (32)

where <1>3 allows a correction to the amplitude and <1>4 an associated phase modulation. The
corresponding Galerkin equations are not presented here on account of their length but
the results are described in the following section.

5, DISCUSSION OF RESULTS

It is not possible to obtain the exact solution to the nonlinear differential eqn (7).
Instead, an independently obtained numerical solution, which utilizes a variable-order
variable-step Adams method, provides possibly the best reference with which to assess
the approximate model solutions. The numerical strategy for systematically locating the
symmetric localized solutions is outlined in Champneys and Spence (1993).

Various criteria may be used to gauge the quality of an approximate solution obtained
via Galerkin's method. While it may be argued that no single technique can adequately
describe the error between the exact and approximate solutions, a number of different views
are presented below which together confirm that the method outlined here has been used
successfully to approximate localized solutions of eqn (7).

Figure 3 illustrates the close comparison achieved between the approximate deflected
shapes, resulting from each order of the Galerkin analysis, and the independent numerical
solution. As expected, the first order approximation provides the worst agreement, with
successive improvement following the introduction of further modes. The fourth mode
solution is indistinguishable, to the naked eye, from the numerical solution for all load
values presented. The existence of a nontrivial buckled shape at P = 0.0 does not indicate
an initial deflection of the geometry. Rather, it represents an equilibrium point on the post­
buckling curve, albeit far from the initial buckling load, and possibly unlikely to be attained
in a physical context.

The amplitude of the localized solution at the symmetric section (x = 0) is shown in
Fig. 4. For a single mode approximation the amplitude is best predicted close to P = P'
with worsening approximation as P --+ O. A significant improvement is obtained by the
introduction of a second mode, and with four modes the approximation is once again
obscured by the numerical solution.

Instead of comparing the solutions at a specific point, an average measure of the error
is achieved by integrating the square of the residual along the length of the strut

(33)

This removes the dependence of the error measure upon the spatial variable x, leaving it
dependent purely on the assumed mode form. The better the approximate shape, the smaller
the error, as demonstrated in Fig. 5. Perhaps inevitably, the agreement of the first and
second-order approximations become progressively worse as the load decreases from P'
the point of expansion for the perturbation scheme, and consequently the source of the
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Fig. 3. Comparison of numerical and approximate buckle shapes for various loads: I--one mode;
II-two modes; IV-four modes; N-numerical solution.
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Fig. 4. Load vs amplitude (at x = 0) for single-hump localized solutions: I-one mode; II-two
modes; IV-four modes; N-numerical solution.
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mode shapes. Naturally, the exact solution, to which w tends as n --+ 00, has zero error.
Although this method quantifies the error, it does so in an averaged sense, and is only
useful when comparing one approximate form with another.

The first-order end-shortening is represented by

f
oc 1

~ = -w'2dx
2 '-oc

(34)

and, like the residual, may be considered as a measure of the average error between modal
and numerical solutions. As seen in Fig. 6 the end-shortening is substantially over-estimated
by a single mode approximation with a significant improvement following the inclusion of
additional modes. The actual load vs end-shortening response is unusual with a turning
point developing at approximately P = O.9Y. However, the appropriateness of the non­
linear elastic foundation to model real behaviour is not of concern here-rather the ability
of the approximate solution to mimic the behaviour of the accurate numerical solution. In
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Fig. 6. Load vs end-shortening for single-hump localized solutions: I~one mode; II~two modes;
IV~four modes; N~numerical solution.
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any case, Fig. 6 represents the load vs end-shortening for a specific set of equilibrium
solutions (the single-hump localized form) and is independent of the type ofloading applied.

6. CONCLUDING REMARKS

An approximate solution technique has been developed to solve the problem of local­
ized buckling of a strut on an elastic foundation. The method uses a continuous dis­
placement function to represent each mode, with the actual shape being parameterized by
the eigenvalues of the linearized differential equation, and the amplitude being found from
a Galerkin procedure. It is apparent that all characteristics of the numerical solution are
duplicated, to various degrees, by each approximate solution and that a very good agree­
ment has been obtained with as few as four modes.

The application of a Galerkin procedure to problems of buckling in structural engin­
eering is not a new exercise although the author is unaware of previous attempts to model
the localized buckle pattern described in this paper. For the case of a purely elastic
foundation, in which a total potential energy functional exists, other procedures based on an
energy formulation, including the Raleigh-Ritz method, are equally valid. The similarities
between the Galerkin method and the Rayleigh-Ritz method have long been known
(Galerkin (1915», and are currently being explored in the context of localized solutions
(Wadee et al. (1996».

Following the successful development of the Galerkin procedure described here it is
hoped to extend the method to analyse the phenomenon of localized buckling of a strut on
a visco-elastic foundation. In this case, a potential energy functional does not exist, making
it necessary to base the method on the governing differential equation, thereby favouring
the Galerkin approach.
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APPENDIX A

Second mode
The coefficients of the amplitudes in the coupled eqns (31) for a two mode approximation are:

1
k] = ISac(lS+ 7ac4+30ac2p' + ISp 4 -IOP(ac2+ 3p2))

+ ~(lS+ 70:4+ lOac2p2 +3p4 -IOP(ac2+p2))C],
ISac2

I pn 4 4
k]22 = - -10 + -(0: -16P )C2 ,

ac Sac6

(AI)

and

I
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where C] and C2 are given in (28).


